
Web Frameworks

Course of Web Technologies
A.A. 2010/2011

Valerio Maggio, PhD Student
Prof.ssa Anna Corazza

web development done right

2
Outline

►Web technologies evolution

►Web frameworks

○ Design Principles

► Case Study

○ Django and GAE (Google App Engine)

►Working Example

3
Intruduction

►Nowadays frameworks has become a
buzzword

○ Software framework

○ Web framework

○ Development framework

○ …

► So, what do you expect a web framework is?

4

1. Web Technologies
Evolution

5

Web: Evolution Roadmap

HTML Pages:

►Web developers wrote every page “by hand”

►Update a web site means editing HTML

►“redesign” involved redoing every page

○ One at a time

►Solution not scalable

HTML Pages

1

6

Web: Evolution Roadmap

CGI – Common Gateway Interface

► (+) Pages intended as resources

○ Pages are generated dynamically on demand

○ Raise of (so called) server side technologies

► (-) Code reuse difficult

○ Lot of “boilerplate” code

► (-) High learning curve

CGI Scripting

2HTML Pages

7

► What are pros and cons of these two CGI
examples ?

CGI Perl Example

8

Web: Evolution Roadmap

PHP like solutions

► (+) Learning curve extremely shallow

○ Code directly embedded into HTML

► (-) No security and/or protection mechanism
provided

► (?) Bunch of HTML, (Business Logic) Code,
(Data) SQL code all together

PHP like languages

3CGI Scripting

HTML Pages

9

JSP Example: Pros and Cons ?

10

Web: Evolution Roadmap

RIA and “Integrated Solutions”

► RIA: Rich Internet Applications

○ Q: Do you know what RIA means?

○ A: Desktop-like web applications
● (Ajax and javascript intensive web apps)

► A.k.a. Solutions battery included

► CMS and Web Frameworks

CGI ScriptingHTML Pages RIA and “Integrated solutions”

4PHP, ASP, JSP, ...

11

CMS: Content Management
System

► Aim to manage work-flows and contents in a
collaborative environment

► Designed to simplify the publication of
contents to web sites and mobile devices

► Examples: Joomla, Drupal, Wordpress, ….

12
Web frameworks

► Aim to alleviate the overhead associated with
common Web development
○Databases, templates, sessions, …

► Designed to support the development of dynamic
websites, web applications and web services

► Examples: Struts, Spring, Ruby on Rails, Django,
Google App Engine, ...

13

So, What is a Web Framework?

► What does this code do?

► What happens when multiple pages need to connect to database?

► Should a developer really have to worry about printing the
Content-type?

► Is this code reusable in multiple environments with different DB
connection parameters?

►What happens when a web designer have to redesign the page?

14
Web Frameworks in a nutshell

► These problems are exactly what a web
frameworks tries to solve

► Web frameworks provides a programming
infrastructure for applications

► Focus on developing code without having to
reinvent the wheel

15

2. Web Frameworks Design
Principles

16
CGI Architecture Model

Presentation and
Visualization

Business Logic

Data and Models

17
CGI Architecture Model

► Task centric architecture (a.k.a. Model 1)
○Difficult reusability and maintenance of code

○ Requires different skill-sets

High coupling among:

► Presentation (View)
○How to show data

► Processing (Controller)
○What information to show

► Data Acquisition (Model)
○What information to extract (from DB)

18
Model 1 Architecture (Java)

► Processing delegates as JSP and Servlets

► Is there any difference between CGI and
Servlet?

19
MVC Architecture Model

► Model:

○Manages domain and
data acquisition

► View:

○Manages the
visualization of data

► Controller:

○Manages domain and
data processing

Q: Do you think this model is feasible to be used on the web as is?

20
Web-MVC Architecture Model

► Model:

○Manages domain and
data acquisition

► View:

○Manages the
visualization of data

► Controller:

○Manages domain and
data processing

A: No (direct) relationship between the view and the model

21
Model 2 Architecture (Java)

► Model:
○ EJB and

Javabeans

► View:
○ JSP and JFaces

► Controller:
○ Servlets

22
Fulll-stack web frameworks

► From Python.org wiki:

[..] frameworks provide support for a number of
activities such as interpreting requests, producing
responses, storing data persistently, and so on.
[..] those frameworks [..] are often known as full-
stack frameworks in that they attempt to supply
components for each layer in the stack.

► So, what are such components?

23
Web Frameworks Capabilities

► View
○ JavaScript Library

○ Template Engine and View Composition

○Development Server

► Controller
○URL Routing

○ Controller-view Association

► Model
○Database Abstraction

○ORM (Object Relational Mapping)

24
Database Access

► Distributed Access

Logic (JSP, Servlets)

► Q: How easy is modify

the db schema?

► Centralized Access

Logic

25
Active Record pattern

► An object

encapsulates both

data and behavior

► Put data access logic

in the domain object

http://martinfowler.com/eaaCatalog/activeRecord.html

26

Heavy-weight vs Light-weight
Frameworks

► Heavy-weight frameworks:
○ (Mostly) Java Based

○ Based on Model 2 Architecture

○High learning curve

○ Bunch of (XML) Configuration Files

► Light-weight frameworks:
○ Convention over Configuration and DRY Principles

○ Shallow learning curve

○Use of Dynamic Languages
●Python, Ruby, Groovy, Scala

27

H-W Java frameworks: Struts

28

H-W Java frameworks: Hibernate

29
Design Principles

► Convention over configuration

○ “Convention over Configuration is a programming design that favors
following a certain set of programming conventions instead of
configuring an application framework. [...]”

► DRY (Don't repeat yourself)

○ “DRY is a principle that focuses on reducing information duplication
by keeping any piece of knowledge in a system in only one place.

30

3. Case Study:
Django and

Google App Engine

31
Frameworks and Languages

32
Python Programming Language

 “Speed and flexibility of development are critical.
 Dynamic languages let you get more done with less lines
of code (which means less bugs)”

► Object oriented
languages

► Clean and simple

syntax
○ Strong Typed
○Dynamic Typed

33
Python Programming Language

► Is there someone that uses
python in professional
projects?
○ IBM, Google, Sun, HP, Industrial

Light and Magic, NASA, Microsoft

► Goggle it:
● site:microsoft.com python

●You'll get more than 9 thousands
results

34

Python:
Language of the year 2010

Programming language Python has become programming
language of 2010. This award is given to the programming
language that gained most market share in 2010.

Python grew 1.81% since January 2010. This is a bit more
than runner up Objective-C (+1.63%).

Objective-C was favorite for the title for a long time thanks
to the popularity of Apple's iPhone and iPad platforms.
However, it lost too much popularity the last couples of
months.

Python has become the "de facto" standard in system
scripting (being a successor of Perl in this), but it is used for
much more different types of application areas nowadays.

Python is for instance very popular among web developers,
especially in combination with the Django framework.

Since Python is easy to learn, more and more universities are
using Python to teach programming languages.

Source: tiobe.com

35

TIOBE: Programming Languages
ranking

http://www.tiobe.com

http://www.tiobe.com/

36
Python Dynamic Typing

“Duck Typing”
Walks like a duck?

Quacks like a duck?

It's a duck!

def half (n):
 return n/2.0

Q: What is the type of
variable n?

37
Django web framework

Design characteristics

► Model-View-Controller for the Web

► Written in Python

► Explicit instead of implicit

► Loose Coupling

► Don't repeat yourself

38
Django Architecture Model

► Django is based on a slightly different version of MVC
○ a.k.a. MVT: Model View Template

► Model: Domain Objects
○ Python Classes

► View: contains business logic for the pages

○ Callback as python functions

► Templates: describes the design of the page
○ Template Language HTML based

39
Django Stack

► Database wrapper (ORM)

► URL dispatcher

► Template system

► Admin Framework

► I18n & l10n

► Authentication

► RSS

►

40
Projects and Applications

► Projects:
○ Composed by different applications
○Glued together by unique configuration file

► Applications:
○ Set of portable functionalities
○ Code is more reusable
○Django Plugables

●(djangoplugables.com)

41

► Loose coupling principle between URLs and

Views
○Based on regular expressions

URL Dispatcher

42
Template Language

► Very restrictive specific-language
○ Allows only presentation operations
○No logic and/or processing allowed

► Less Pythonic
○Oriented to web designers
○HTML based

► Templates Inheritance Mechanism
○Code Reuse

43

Template Language (2)
► Template Inheritance
○ Templates are composed by Blocks

44
Template Language (3)

► Variables: {{ variable_name }}

► Tags: {% template_tag %}

○ Board definition: Tags tell the framework to do

something

► Filters: {{ variable|filter }}

○ Alters the formatting of variables

45

Django Admin Framework

►So called Killer-application

►Compliant with Active record Pattern

46
Django Included Apps

► django.contrib.auth
○An authentication system.

► django.contrib.contenttypes
○A framework for content types.

► django.contrib.sessions
○A session framework.

► django.contrib.sites
○A framework for managing multiple sites with one Django

installation.

► django.contrib.messages
○A messaging framework.

47
Google App Engine

► dynamic web serving (built on top of Django)
○ e.g. supports Django Templating Language

► persistent storage

► automatic scaling and load balancing

► APIs for authenticating
○ using Google Accounts

► a fully featured local development environment

► scheduled tasks for triggering events at specified
times and regular intervals

48
References: Google App Engine

► http://code.google.com/appengine/

http://code.google.com/appengine/

49
References: Django

► http://www.djangoproject.com/
○ Sito del Progetto

► https://groups.google.com/forum/#!forum/django-it
○Google group Italiano di Django

http://www.djangoproject.com/
https://groups.google.com/forum/#!forum/django-it

50
References: Python

► http://www.python.org

○ Sito ufficiale di Python

► http://www.python.it

○ Sito ufficiale Python Italia
► https://groups.google.com/forum/#!forum/it.comp.lang.python

○ Google group Italiano di Python

► http://forum.python-it.org

○ Forum (~)official Python Italia

► http://www.pycon.it/

○ Python Italian Conference

○ EuroPython 2011 – Florence, IT – across spring

http://www.python.org/
http://www.python.it/
https://groups.google.com/forum/#!forum/it.comp.lang.python
http://forum.python-it.org/
http://www.pycon.it/

51
References: Titles

► The definitive guide to
Django
A. Holovaty and J.K.
Moss, Apress

52
References: Titles

► Sviluppare
applicazioni web con
Django,
Marco Beri,APOGEO

53
References: Titles

► Python,
Marco Beri, APOGEO
Serie Pocket

54
References: Titles

► Programming Google
App Engine,
D. Sanderson,O'Reilly

55
And last...

►Want to get some actions?

►Let's do together a working
example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

